A hyperelastic fractional damage material model with memory
نویسندگان
چکیده
منابع مشابه
On Stress Anlysis for a Hyperelastic Material
Performing a finite element analysis (FEA) on a hyperelastic material is difficult due to nonlinearity, large deformation, and material instability. This paper provides a brief review of the hyperelastic theory and discusses several important issues that should be addressed when using ANSYS. Analysis on a fatigue specimen is used as an example of one of our product development challenges upon w...
متن کاملA novel finite element model of the ovine lumbar intervertebral disc with anisotropic hyperelastic material properties
The Ovine spine is an accepted model to investigate the biomechanical behaviour of the human lumbar one. Indeed, the use of animal models for in vitro studies is necessary to investigate the mechanical behaviour of biological tissue, but needs to be reduced for ethical and social reasons. The aim of this study was to create a finite element model of the lumbar intervertebral disc of the sheep t...
متن کاملA Nonlinear Creep-damage Constitutive Model of Mudstone Based on the Fractional Calculus Theory
During the flood development in an oil field, the creep characteristic of mudstone is one of the important factors causing casing damage. In this study, based on the theory of fractional order differential and taking into account the creep damage evolution rules, a fractional nonlinear creep-damage model is proposed to reflect the instantaneous deformation in loading processes and the accelerat...
متن کاملSymmetric Hyperbolic Equations of Motion for a Hyperelastic Material
We offer an alternate derivation for the symmetric-hyperbolic formulation of the equations of motion for a hyperelastic material with polyconvex stored energy. The derivation makes it clear that the expanded system is equivalent, for weak solutions, to the original system. We consider motions with variable as well as constant temperature. In addition, we present equivalent Eulerian equations of...
متن کاملA Elastic and Hyperelastic Material Model of Joint Cartilage - Calculation of the Pressure Dependent Material Stress in Joint Cartilage
In this paper we introduce a elastic and hyperelastic model to describe the pressure dependent material stress in joint cartilage. We used the pressure dependent E-modulus E = f(s) to calculate the material stress. E = f(s) is a degree 4 polynomial [1]. The indentor was pressed 0.4 mm into the tissue. The results show that the maximal stress at the contact zone between indentor and cartilage ac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Solids and Structures
سال: 2017
ISSN: 0020-7683
DOI: 10.1016/j.ijsolstr.2017.06.024